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1. Introduction 

The n-body problem, a well-established, potentially intractable algorithm with 

computational complexity of  2n , is a critical component to many solutions in 

fields as varied as biology, chemistry, physics, and engineering.1,2 Efforts to 

manage the computational cost of this algorithm have resulted in the development 

of approximations such as the Barnes-Hut Fast Multipole Method (FMM) and the 

Adaptive Fast Multipole Method (AFMM).3–5 The Black-Box Adaptive Fast 

Multipole Method (bbAFMM) used in this work is a variant of the AFMM and 

follows a similar structure but without the explicit definition of multipole 

expansions, relying instead on the use of a Chebyshev interpolation to evaluate a 

continuous distribution of density at the surface of each box that encloses a set of 

particles.6 The result is an algorithm that executes with a lower computational 

complexity of O(n) for n particles for any non-oscillatory function without 

sacrificing the efficacy of the final solution.7 

The bbAFMM algorithm defines a set of 8 independent functions or kernels that 

are attractive to exploitation within the high-performance computing (HPC) 

community using the graphics processor unit (GPU).8 This work examines the 

particle-to-particle (P2P) kernel using an algorithmic analysis that focuses not just 

on arithmetic intensity, but GPU memory bandwidth, GPU peak performance, and 

peripheral component interconnect express (PCIe) bandwidth to understand the 

potential performance benefit of using the GPU device for its definition. The 

resulting algorithmic analysis is then compared with the observed results of the 

GPU-defined P2P kernel we developed using the Compute Unified Device 

Architecture (CUDA).9 A brief outline of the rest of this work follows. 

The next section will discuss the background of the bbAFMM algorithm including 

a brief description of the 8 defined kernels emphasizing the P2P kernel that is the 

focus of this work. Section 3 will provide the algorithmic analysis of the P2P kernel 

and will include subsections on approximating floating-point operations, counting 

bytes as well as GPU peak, memory, and PCIe bandwidth, as they are critical in the 

final analysis. This section will also describe the computing environment employed 

in this work. Section 4 describes the actual implementation of the P2P kernel using 

the GPU and includes the resulting observed performance. This section will 

examine the observed results in relation to the previous section on algorithmic 

analysis. The last section presents conclusions and future work. 
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2. Background 

The bbAFMM is an approximation of the n-body problem and structurally similar 

to AFMM defining 8 separate kernels that operate within a tree structure.10 Each 

level 1l  in the tree is refined recursively from level l  by subdividing cubic data 

structures containing source particles under consideration commonly referred to as 

boxes.10,5 It is during the execution of these recursive phases that the 8 kernels are 

called, and can be defined as, either leaf or nonleaf modes—i.e., execute at either 

the leaf or nonleaf levels of the defined tree structure.  

The multipole-to-multipole (M2M), multipole-to-local (M2L), particle-to-local 

(P2L), and local-to-local (L2L) are defined as nonleaf, while the particle-to-

multipole (P2M), P2P, multipole-to-particle (M2P), and local-to-particle (L2P) are 

defined as leaf-mode operations. These kernels function together to approximate 

the global solution bbAFMM through far- and near-field computations, the latter of 

which is the result of the execution of the P2P kernel.  

The P2P kernel calculates the contributions of particles belonging to a leaf box and 

its neighboring leaf boxes, and is analogous to the all-pairs interaction given by the 

direct n-body solution.1,2 Letting the total number of neighboring clusters at a given 

level for any leaf box T be N(T), the computation of near-field values using the P2P 

kernel is given mathematically by Eq. 1, such that x,y are defined as a well-

separated pair,11 i.e., not sharing a boundary, in target box T and source box 

S , respectively, for kernel K(x,y) for all xi  T. 7,12 

    
 
 
 


TNS Sy

jjii

near

j

yxKxf  . (1) 

It follows from Eq. 1 that the GPU should be leveraged to execute the P2P kernel 

given the potential high floating-point count and the proclivity of the device to 

efficiently consume these operations.2 However, there are other factors, which are 

discussed in the following section. 

3. Algorithmic Analysis of P2P 

This section will discuss the actual algorithmic analysis employed by this work and 

detail the methodology used to determine both approximate floating-point 

operation counts and associated bytes moved by the P2P kernel. This section also 

presents the actual computing environment in which this work was completed. 
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3.1 Computing Environment Employed 

The computing environment used for this work is a 64-node heterogeneous cluster 

consisting of 48 IBM dx360M4 nodes, each with one Intel Phi 5110P and 16 

dx360M4 nodes each with one NVIDIA Kepler K20M/K40M GPU. Each node 

contained dual Intel Xeon E5-2670 (Sandy Bridge) central processing units 

(CPUs), 64 GB of memory, and a Mellanox FDR-10 Infiniband host channel 

adaptor. 

However, this work is focused on the behavior of a single kernel and as such does 

not employ multiple processors. This work makes use of a single processing core 

and a single NVIDIA Kepler K40 GK110 architecture with 2 PCIe Gen 3.0 slots 

standard, optional 2 double-widths PCIe for GPUs or coprocessors. The defined 

metrics for the hardware are 1) PCIe bandwidth (2 × 16 slot), 7.877 GFloat/s; 

Kepler K40 peak, 4,290 × 1 billion floating-point operations (GFLOPs), and 288 

GB/s Kepler K40 memory bandwidth.13,14  

3.2 Calculating FLOP and Byte Counts 

The calculation of FLOPs and bytes moved by the P2P kernel follows from the 

algorithm employed by the CPU implementation shown in Fig. 1 for given leaf box 

T with “U-List” the current list of neighbors and K the defined kernel. The K

kernel defined by the CPU follows the algorithm given by Fig. 2. 

 

Fig. 1 P2P algorithm 

Let S  be the average number of particles per leaf node and U  

be size of U-List for the cluster that the 
th
i  particle 

resides in. 

1.  FOR 0i  TO S  

2.    FOR 0j  TO 1U  

3.        jU_ListMj        // pointer to cluster of neighbors 

4.      FOR 02 i  TO  SIZEMj       // total number in cluster 

5.                   22 idataM,idataTK.widataMifif jj   

6.      END FOR 

7.    END FOR 

8.    FOR 12 ii  TO S      // local particles 

9.                 22 idataT,idataTK.widataTifif   

10.                idataT,idataTK.widataTifif  2  

11.   END FOR 

12. END FOR 
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Fig. 2 K kernel algorithm 

Given that specific FLOP counts are intrinsically bound to hardware design, we 

take an asymptotic approach and ignore constants, examining instead how the 

algorithm scales for given inputs.15 The analysis completed by this work will focus 

on the execution of the P2P kernel for a single leaf node N , but these derivations 

can be extended without loss of generality to all leaves in the tree structure 

employed by bbAFMM. Analysis of the P2P algorithm in Fig. 1 reveals several 

nested loops that depend both on the number of neighboring particle clusters and 

all locally defined particles. The operations that occur within these loops compute 

the values for the neighboring particles Mf and local particles Lf  shown in Fig. 1 

lines 4–6 and 8–11, respectively.  

The mathematical representation of the P2P algorithm is shown as Eq. 2 with size

jM  

being the total number of particles defined in cluster ListU _ at index j . 

   




  







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
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










S

i

U

j

S

ii

L

M

i

M ff

size
j

0

1

0 1202

. (2) 

Let the number of neighboring particles from the cluster at index j  shown in Fig.  

line 4 be averaged as Eq. 3, which assumes a worst-case scenario. 

 S
U

MMM size

Uj

size

j

size

j




 

1

110 
. (3) 

Following asymptotic analysis,15 the operations Mf and Lf are defined as 

constants, and by applying Eq. 3, Eq. 2 becomes Eq. 4. 

      
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
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USSUSSS
0 0

222

0 12

1

012

1

0

. (4) 

The determination of the total number of bytes moved by the P2P kernel follows 

the algorithm presented by Fig. 1 but only counts any potential movement across 

the PCIe bus, the established bottleneck for many GPU-based solutions.16,17 

Input: Well-separated points YX,  

1.  FUNCTION K (parameters: X, Y) 

2.    SET d TO      222
Y.zX.zY.yX.yY.xX.x   

3.    Return  
d

1.0  

4.  END FUNCTION 
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Limiting the byte count to global data movements removes the K kernel from the 

equation and leaves only the particles defined by the given leaf box T and any 

neighbors defined by Eq. 3 for each member in the U-List. The resulting asymptotic 

behavior of bytes moved for the P2P kernel is shown as Eq. 5. 

    USSUS  . (5) 

3.3 Kernel Arithmetic Intensity 

The arithmetic intensity is the ratio of FLOPs (Eq. 4) to bytes moved (Eq. 5) and is 

directly related to potential GPU performance such that the higher the ratio, the 

better the performance is likely to be using the GPU. Clearly the arithmetic intensity 

given by the P2P kernel scales as a product of the average number of particles per 

leaf node S  and the average number of particles per neighboring clusters. This 

computed arithmetic intensity is examined in relation to the defined GPU memory 

bandwidth, GPU peak performance, and PCIe bandwidth in the next subsection. 

3.4 Hardware-Derived Metrics 

There are 2 main issues when running a kernel on the GPU: proper utilization of 

the GPU and the cost of data transfer over the PCIe. Given a kernel with high 

arithmetic intensity such as P2P, proper utilization of the GPU is accomplished with 

a bigger kernel and setting the number of threads per block at optimal levels. 

However, estimating the cost of data transfer over the PCIe bus is more involved. 

The estimated speed at which the PCIe can supply the data necessary for the P2P 

kernel to operate at optimal levels must be determined. The performance of the 

hardware employed in this work, detailed in Section 3.1, is used to derive the 

metrics for this subsection. The estimated PCIe bandwidth is given by Eq. 6 and 

the estimated GPU computational speed is given by Eq. 7, with Kbyte and Kflop the 

number of bytes and FLOPs for the P2P kernel, and PCIebw and GPUflop the PCIe 

bandwidth and GPU FLOPs peak. 

 
bw

byte

PCIe
PCIe

K
T

910
 . (6) 

 
flop

flop

flop
GPU

K
T

910
 . (7) 

Computing the values for Eqs. 6 and 7 is accomplished by factoring out U  for  

Eqs. 4 and 5 to determine the approximate FLOPs and bytes moved for the P2P 
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kernel. The approximated kernel FLOPs and bytes moved are then applied to  

Eqs. 6 and 7 for the final estimated performance results. The estimated performance 

results are computed for increasing numbers of particles and shown in the Table, 

where S is defined as the number of particles. 

Table Estimated P2P kernel performance 

Number of  

Particles 
PCIeT  flopT  

flopPCIe TT   

4,913 6.24e-07 5.63e-06 5.001e-06 

9,261 1.18e-06 2.00e-05 1.88e-05 

13,824 1.75e-06 4.45e-05 4.28e-05 

24,389 3.10e-06 1.39e-04 1.36e-04 

97,336 1.24e-05 2.21e-03 2.20e-03 

 

The Table shows that for increasing numbers of particles, the time it takes the PCIe 

to transfer data to the kernel is less than it takes the device to process the results. 

This indicates an operation that is compute-bound rather than memory-bound and 

likely a good candidate for definition using the GPU. 

4. Implementing P2P as a GPU Kernel 

A critical aspect to building an efficient P2P GPU kernel was to keep as much data 

as possible on the device rather than multiple calls across the PCIe bus. This was 

accomplished using vectors to both store actual cluster data and provide indirection 

pointers to these clusters. These indirection and data clusters are briefly described 

in the next subsection. 

4.1 Kernel Indirection and Data Clusters  

The set of indirection vectors that are passed to the GPU kernel consist of the global 

cluster index, the associated neighbor index, starting point for neighbor, and the 

starting point for local called cidx, uidx, ulist, and cpart_idx, respectively (see  

Fig. 3). The global thread index is computed using CUDA and used to determine 

the current local and associated neighboring clusters with computed offsets 

cpart_idx and ulist, respectively. The indirections provide a means to map proper 

algorithm behavior to the GPU, as the device will only see data within a given 

thread block without regard to any real structure. The indirections properly isolate 

threads to defined clusters of data. These indirections for local and neighbor clusters  

are then applied to retrieve the actual coordinate data held with the particles 

structure. The number of threads per block for the GPU kernel is defined based on 

the total number of coordinate particles held by the particles structure. 
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Fig. 3 P2P data and indirection pointers 

The P2P GPU kernel executes for each cluster, storing the computed potentials for 

each in the global structure that was copied over the PCIe bus. The algorithm for 

the P2P GPU kernel is shown in Fig. 4. Once the kernel completes, the CPU will 

collect each potential from the global structure and copy it to each of the leaves in 

the current tree structure. 

The observed performance of the implemented P2P GPU kernel and its relation to 

the predictive analysis are discussed in the next subsection. 
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Fig. 4 P2P GPU kernel algorithm 

4.2 Observed Performance and Predictive Analysis  

The P2P GPU kernel demonstrates dramatic performance improvements over the 

CPU-only implementation. This GPU reveals a speed-up factor of over 500 times 

greater than the single-threaded CPU processor version for close to 100,000 

particles, as shown in Fig. 5. These results are congruent with the predicted analysis 

regarding both the arithmetic intensity of the kernel itself and the hardware-derived 

metrics. There are several reasons for this observed performance increase when 

employing the GPU over the serial CPU. 

Let N be total number of particles, P be collection of particles, CIDX be the 

global cluster index, UIDX be the associated neighbors index, and IDXCPART _

be the starting point to particle index 

Output: f  

1.    threadIDglobalgidx _   // from CUDA 

2.     IF Ngidx  THEN 

3.             SET 0F  

4.              gidxPpi   

5.              gidxCIDXI   

6.             FOR  IUIDXj  TO  1IUIDX  

7.                      jULISTJ   

8.                     FOR  JIDXCPARTi _2 TO  1_ JIDXCPART  

9.                              2iPpj   

10.                            pjpiKwpjFF ,.   

11.                   END FOR 

12.           END FOR 

13.           FOR  IIDXCPARTj _ TO gidx  

14.                  jPpj   

15.                  pjpiKwpjFF ,.   

16.           END FOR 

17.           FOR 1 gidxj TO  1_ IIDXCPART  

18.                  jPpj   

19.                 pjpiKwpjFF ,.   

20.          END FOR 

21.                   Fgidxfgidxf   

22.   END IF 
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Fig. 5 GPU-defined P2P kernel performance 

The first reason is the most obvious: The CPU version is not optimal given that a 

single process is being employed without leveraging any of the multithread 

capabilities. The GPU executes thousands of cores that are employed for even the 

simplest of functions, and this puts the CPU at a severe disadvantage from the 

start.13 Another reason for the substantial performance benefit of the GPU for the 

P2P kernel is that both the locality and basic operation is perfectly suited for the 

data-throughput model of the device. The data managed by the kernel is executed 

in unison with no coalescing or bank conflict issues. 

5. Conclusions and Future Work 

This work documented the implementation of the P2P kernel for bbAFMM using a 

shared-memory single GPU paradigm with CUDA as the language vehicle and has 

shown dramatic performance increases over the corresponding CPU 

implementation. The P2P GPU kernel revealed a speed-up factor of more than 500 

times for close to 100,000 particles. These observed results are congruent with 

predictive results gleaned from both algorithmic analysis and hardware-derived 

metrics that include GPU memory bandwidth, GPU peak performance, and PCIe 

bandwidth. 

In the future we would like to apply these algorithm analysis techniques with other 

kernels defined using bbAFMM. Particular interest resides in the analysis and 

implementation of the M2L kernel, as this comprises the majority of bbAFMM and 

would present the largest payoff. 
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GPU graphics processor unit 

HPC high-performance computing 

L2L local-to-local 

L2P local-to-particle 

M2L multipole-to-local 

M2M multipole-to-multipole 

M2P multipole-to-particle 

P2L particle-to-local 

P2M particle-to-multipole 

P2P particle-to-particle 

PCIe peripheral component interconnect express 
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